NMDA, AMPA, and benzodiazepine binding site changes in Alzheimer's disease visual cortex.
نویسندگان
چکیده
Quantitative receptor autoradiography was used to measure the laminar distribution of [3H]glycine and [3H]glutamate binding to the N-methyl-D-aspartate (NMDA) receptor complex, [3H]D,L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) binding to the AMPA receptor, and [3H]flunitrazepam binding to the benzodiazepine (BDZ) receptor in three areas of visual cortex in control and Alzheimer's disease (AD) postmortem human brains (primary or striate visual cortex, visual association cortex, and higher-order visual association cortex, corresponding to Brodmann Areas 17, 18, and 21, respectively). In Area 17, binding to the NMDA, AMPA, and BDZ receptors was not significantly altered in the AD brains (except in layer VI for [3H]glycine and layer III for [3H]AMPA, where binding was reduced in the AD brains). Ligand binding to the two EAA receptors in Area 18 was, however, significantly reduced in the AD brains (layers I through III for [3H]glycine and layers III through VI for [3H]AMPA). In Area 21, binding to both the NMDA and BDZ receptors but not to the AMPA receptor, was significantly reduced in almost all laminae of the AD brains (layers I through VI for [3H]glycine and layers I through V for [3H]flunitrazepam). This hierarchical pattern of laminar binding loss with increasing complexity of association visual cortices is consistent with the increasing numbers of neurofibrillary tangles found in those areas, implicating NMDA and BDZ receptor bearing cells in AD neuropathology. AMPA receptor losses do not parallel the pathology, suggesting that AMPA receptors are not directly correlated with the pathology.
منابع مشابه
Excitatory amino acid binding sites in the hippocampal region of Alzheimer's disease and other dementias.
Quantitative receptor autoradiography was used to measure muscarinic cholinergic, benzodiazepine, kainate, phencyclidine (PCP), N-methyl-D-aspartate (NMDA) (measured in Tris acetate), quisqualate-sensitive, non-quisqualate-sensitive and total glutamate (measured in Tris chloride buffer) binding sites in adjacent sections of the hippocampal region of 10 Alzheimer's disease, nine control, and six...
متن کاملSelective increase of NMDA-sensitive glutamate binding in the striatum of Parkinson's disease, Alzheimer's disease, and mixed Parkinson's disease/Alzheimer's disease patients: an autoradiographic study.
Parkinson's disease (PD) and Alzheimer's disease (AD) may share certain abnormalities since a subset of PD patients suffer from dementia, and some AD individuals show extrapyramidal symptoms. In vitro quantitative autoradiography was used to examine different subtypes of excitatory amino acid (EAA) receptors (NMDA, KA, and AMPA) and dopamine transporter sites in the striatum (caudate, putamen) ...
متن کاملGYKI 52466, a 2,3-benzodiazepine, is a highly selective, noncompetitive antagonist of AMPA/kainate receptor responses.
In whole-cell voltage-clamp recordings from cultured rat hippocampal neurons, the 2,3-benzodiazepine GYKI 52466 was a potent antagonist of kainate- and AMPA-activated currents (IC50 values, 7.5 and 11 microM, respectively), but was inactive against N-methyl-D-aspartate (NMDA) or gamma-aminobutyric acid responses. The block produced by GYKI 52466 occurred in a noncompetitive fashion, was voltage...
متن کاملتاثیر محرومیت از بینایی طی دوره بحرانی تکامل مغز بر بیان زیرواحدهای گیرنده AMPA در هیپوکامپ موش صحرایی
Background: Environmental signals have an essential role in the maturation of neural circuits during critical period of brain development. It has been shown that, change in visual signals during critical period of brain development changes structure and function of glutamate receptors in the visual cortex. After processing in visual cortex, part of visual signals goes to the hippocampus and mak...
متن کاملMechanism of positive allosteric modulators acting on AMPA receptors.
Ligand-gated ion channels involved in the modulation of synaptic strength are the AMPA, kainate, and NMDA glutamate receptors. Small molecules that potentiate AMPA receptor currents relieve cognitive deficits caused by neurodegenerative diseases such as Alzheimer's disease and show promise in the treatment of depression. Previously, there has been limited understanding of the molecular mechanis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurobiology of aging
دوره 14 4 شماره
صفحات -
تاریخ انتشار 1993